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Traditional techniques for performance analysis provide a means for extracting and analyzing raw 
performance information from applications. Users then reason about and compare this raw performance data 
to their performance expectations for important application constructs. This comparison can be tedious, 
diEcult, and error-prone for the scale and complexity of today's architectures and software systems. To 
address this situation, we present a methodology and prototype that allows users to assert performance 
expectations explicitly in their source code using performance assertions. As the application executes, each 
performance assertion in the application collects data implicitly to verify the assertion. By allowing the user 
to specify a performance expectation with individual code segments, the runtime system can jettison raw data 
for measurements that pass their expectation, while reacting to failures with a variety of responses. We 
present several compelling uses of performance assertions with our operational prototype including raising a 
performance exception, validating a performance model, and adapting an algorithm to an architecture 
emDiricallv at runtime. 

I Introduction 
Traditional techniques for performance analysis provide a variety of mechanisms for 

instrumentation, data collection, and analysis. These techniques, such as tracing 
communication activity, sampling hardware counters, and profiling subroutines, allow 
users to capture raw data about the performance behaviors of their code. Then, users 
reason about and compare this raw data with their performance expectations for 
individual application constructs. In most cases, these techniques do not support users 
explicitly defining these performance expectations in source code, forcing users to reason 
fiom the perspective of absolute performance for every performance experiment and 
every application construct. For the scale and complexity of today's architectures and 
software systems, the volume of raw output can easily overwhelm any user. This 
comparison can be tedious, difficult, and error-prone. 

To address this issue, we present methodology and prototype system, called 
perjiormance assertions @A), that provides the user with a methodology to assert 
explicitly performance propertie? for application code constructs within their 
applications. The PA runtime, then, implicitly gathers pdormance data based on the 
user's assertion and, then, verifies this expectation at runtime. By allowing the user to 
specify a performance expectation with individual code segments, the runtime system can 
jettison raw data for measurements that pass their expectation while reacting to faiZures 
with a variety of responses. Very simply, this approach attempts to automate the testing 
of performance properties of evolving complex software systems and the development of 
software performance models. 

To this end, we have implemented an operational prototype for performance 
assertions. Our experience with this prototype on several applications and with a variety 
of response mechanisms indicates that performance assertions can improve the traditional 
process of performance analysis. That said, we are continuing to improve our prototype 
based on several observations fiom these experiments. Key among these observations is 
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the fact that users will need analytical support in determining the bounds for performance 
assertion expressions. Also, our initial prototype considers only serial perfonnance 
metrics focused on one processor. We plan to extend this set of metrics in the prototype 
to include communication, threading, and YO activity. 

PAPI-start(CYCLES,INSTRUCTIONS); 
for (j = 1; j c= lastrow - firstrow + 1; j++) 

#passert (Sipcgeak * 0.5 c $ipc) 
for (j = 1; j e= lastrow - firstrow + 1; j++) 
f 

s u m  = 0.0; 
for (k = rowstr[j]; k c rowstrfj + 11; 

k++) 

1 
w[jl = sum; 

1 
PAPI-stop (vals) ; 
/* Analyze or store PAPI values */ 

s u m  = s u m  + a[kl p[colidx[kll; 
{ 

I 
w[jl = sum;  

I 

s u m  = 0.0;  
for (k = rowstr[jl; k c rowstrfj + 11; 

k++) 

s u m  = s u m  + a [kl * p [colidx [kl I ; 
( 
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In summary, the overall goal of this implementation is to create a source code 
annotation system for applications that allows a user to specify a performance expectation 
for a given code segment. At runtime, the assertion will measure the necessary metrics, 
compare them to the expectation, and, if violated, take some action (e.g., alert the user, 
enable performance monitoring, adapt the current system). Performance assertions 
perform three critical tasks. First, they allow the user to define a portable performance 
expectation in the context of their application design while fkeeing them from focusing on 
instrumentation. Second, PAS limit the amount of data that users must encounter during 
the performance analysis process. By highlighting only those portions of the code thatfad 
to meet the userdefined expectation, PAs can preempt data generation before it is thrust 
upon the user. Third, PAS compel users to express their expectations quantitatively with 
an expression that reflects their application design, and it liberates them from specific 
instrumentation and portability concerns. 

2 Design of Performance Assertions 
The design of performance assertions has three distinct components: a performance 

assertion language, source code annotations, and a runtime system. As illustrated by 
Figure 3, at step 0, a user annotates source code with performance assertions using the 
PA language. Next, at step 0, the user executes the annotated source code and during this 
execution, the PA runtime system collects performance data with instrumentation and 
evaluates the performance expectations. Finally, at step 0, assertions generate a variety 
of responses. Assertions that pass can simply be ignored, while failures can trigger an 
array of responses. For example, in @a, the final PA report for the application indicates 
that the assertion failed 13 of 700 invocations. 

I Original 
Source Code I Annotated 

Source Code 

Figure 3: Performance Assertion Overview. 

The user defines their expectation in our PA language with specific source code 
annotations; this language provides access to various performance metrics as well as key 
features of the architecture and user parameters. That is, expressions can contain 
references to values such as Swtime (wall clock time), $loads (number of memory load 
instructions), $flops (number of floating point operations), Sdlmisses (number of L1 data 
cache misses), Smstallcycles (cycles stalled on memory accesses), or Sipc (instructions 
per cycle). The PA runtime invokes the proper instrumentation and data collection 
facilities for each expression region. PAS can also reference values that represent 
architecture characteristics, such as $fppeak (theoretical floating point peak rate), and 
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arbitrary application values can be integrated into the expression using format 
specifications similar to scanf. 

The runtime system captures the appropriate metrics and evaluates expressions as 
necessary, responding with the appropriate action when an assertion fails. The response 
can take a number of forms. For instance, it can increment a counter, make a callback to 
userdefined subroutine, write the data to a log file, or drive feedback into the application 
or a separate runtime system. 

2.1 Performance Assertion Language 
Our PA language allows a user to specify an expression that contains a variety of 

tokens that represent empirically-measured performance metrics, constants, variables, 
mathematical operations, a subset of intrinsic operations, and format specifiers. Format 
specifiers allow the expressions to incorporate values from the application directly. 

Consider the following example expressions. 

$nInsts / $nCycles > 0.8 

Expression (1) has five tokens. The left-hand side CHS) of this expression specifies 
the ratio of number of instructions completed to the number of cycles. The relational 
operator tests whether the LHS is greater than the constant 0.8, or the right hand side 
(RHS).  When this expression is first evaluated by the PA runtime system, it determines 
that the underlying instrumentation must collect two performance metrics: number of 
instructions completed (nInsts) and number of cycles (nwcles). Subsequent invocations 
read these metrics from the instrumentation, instantiate the expression's variables, and 
evaluate the expression. 

(1) 

$nInsts / $nCycles (0.4 * Sipcgeak) (2) 
Expression (2) is very similar to expression (1); however, the RHS has been replaced 

by another expression that contains an architecturally-dependent constant: $ ipcgeak. In 
order to provide portable, architecture-independent parameterized expressions in our PA 
language, we have included an array of predefined constants that demonstrate the 
performance of the underlying architecture. These constants are loaded at initialization 
and they remain constant throughout the application execution. The value for Sipcgeak 
is substituted into the expression at runtime. These constants can be theoretical they can 
also be empirically measured values, such as those generated with microbenchmarks or 
machine signatures. 

$nInsts / $nCycles (%g * Sipcgeak) , &X (3) 
Expression (3) is very similar to expression (2); however, the RHS has been 

augmented to include state directly fiom the application with the format specifier %g and 
the variable address &x. This capability allows users to specialize expressions for specific 
parameters, such as the size of the workload. 

Aside from expressiveness, our design of this performance assertion language had 
several goals, and we attempted to strike a practical balance among these requirements. 
First, our language must have a flexible, architecture-independent syntax that allows 
users to express a performance expectation for a component of their source code. With 
this syntax, the user can meld the performance properties (or application signatures), in a 
statement that identifies an expectation for common language and library constructs (e.g., 
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loops, BLAS, or MPI). Second, the language should be relatively simple to interpret, 
implement, and validate. Because the PA runtime must evaluate the expressions at 
runtime, it is important that the interpretation and implementation be efficient to 
minimize PA overhead on the application. Third, as the earlier examples demonstrate, we 
need expressive power to allow users to capture complex and important performance 
characteristics of their applications. We expect the need for complex expressions to grow 
as users gain more experience with assertions, and as the number of performance metrics 
increases. 

Although our current prototype is realized as a library, our language specification is 
not dependent on our implementation; we plan to integrate performance assertions with a 
compiler, so that PAS can easily benefit fiom the extensive semantic knowledge of the 
source code. Indeed, compilers might insert performance assertions automatically to aid 
in profiledirected compilation [3,9]. 

Another benefit of a language specification of performance properties is the 
opportunity for optimization of the assertion expressions. We consider them portable and 
flexible because they allow the performance monitoring system to select the appropriate 
instrumentation and collection mechanisms. For example, two approaches to gathering 
hardware metrics are sampling and counting. With performance assertions, the runtime 
system can select the appropriate approach based on the requirements of the expression. 
Furthermore, the language can be optimized for the underlying monitoring system on the 
target architecture, which is similar to Snodgrass’ work [ll]. Although our language is 
not as general as a relational query language, it does offer many opportunities for similar 
optimizations. 

2.2 Source Code Annotations 
Our current implementation relies on source code annotations in the form of library 

calls to construct and evaluate performance assertions for specific regions of code. The 
annotations delimit a region of code and an assertion as Figure 2 shows. The very first 
time an assertion is invoked, the runtime system parses the expression to determine the 
necessary performance metrics to gather. Subsequent invocations enable the necessary 
instrumentation. At completion of an assertion, the PA runtime collects data fiom the 
instrumentation, parses the expression again, and generates an answer. The runtime 
system, then, compares this value to the user specified bounds using the relational 
operator. The PA runtime can simply discard satisfied assertions or it can keep a statistics 
about these values. If the expression fails this comparison, it can trigger a response; this 
response is selectable. Our syntax will allow users to determine the magnitude of 
response for a violated performance assertion. The value can be ignored, counted, 
recorded to a log, enabled more detailed monitoring, invoke a userdefined callback, or 
triggering some corrective action, possibly using an adaptation system like Harmony [7] 
or Autopilot [lo]. Naturally, these annotations are easily disabled both at runtime and at 
compile time. A promising alternative that we are beginning to investigate is to tightly 
couple insertion of performance assertions with compilation so that the combined system 
can generate assertions automatically using the additional knowledge that a compiler 
supplies. 
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2.3 Runtime System 
In conjunction with source code annotations, our initial implementation of 

performance assertions uses a runtime system to define assertions, delineate code regions, 
enable instrumentation, collect data, evaluate expressions, and react to assertion results. 

As the application encounters these PA annotations for the first time, these subroutine 
calls to the PA runtime take several steps to initialize the assertion. During initialization, 
the PA runtime allocates and initializes memory for data storage, parses the expression to 
determine which tokens represent performance metrics, creates a metric register file that 
indicates which metrics the assertion must measure during every invocation, and 
configures any necessary instrumentation. At the end of initialization, the PA runtime 
enables instrumentation. Subsequent calls to the assertion enable and disable 
instrumentation, collect data, and evaluate the expression, taking the appropriate action if 
the assertion fails. The PA runtime provides a variety of responses to assertions. 
Furthermore, each assertion captures statistics for the values generated fi-om the 
expressions. These statistics include minimum, maximum, and an accumulated total. 

Performance assertions provide an array of mechanisms for responding to failed 
assertions. A failed assertion can trigger an increment to a failure counter, a write to a log 
file, more instrumentation focused on a specific region, a userdefined callback, or other 
feedback. 

2.4 Generating Bounds 
We are identiwg promising modeling methods that are necessary for determining 

performance properties of a system and that exploit the additional information acquired 
fi-om performance assertions. Clearly, one primary component of performance assertions 
is the ability to judge when an assertion has failed. Our initial work exploits other 
performance measures such as low-level benchmark and machine signatures. For 
example, a user could state in an expression that they expect a code segment to perform 
equivalent to the triad benchmark, which is part of the Stream memory suite. Later, we 
plan to explore more automated techniques. In one instance, the system generates a 
performance history for each assertion and then compares the assertion with this 
statistical history across architectures. 

3 Compelling Uses of Performance Assertions 
Performance assertions have many compelling uses. First, assertions can highlight 

performance results that do not met user modeled expectations. Second, PAS can 
highlight differences across platforms. Third, PAS can draw attention to regions of code 
that have changing performance expectations as the algorithms evolve. Fourth, PAS can 
instantiate a performance models on small regions of code, alerting a user that their 
modeling assumptions are invalid. Fifth, PAS can trigger a callback into the application or 
adaptively select among a variety of implementations based on the PA expression. 

3.1 Experiment Platform 
We ran our tests on two IBM SP systems located at Lawrence Livermore National 

Laboratory. This first machine is composed of sixteen 222 MHz IBM Power3 8-way 
S M P  nodes, totaling 128 CPUs. Each processor has three integer units, two floating-point 
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units, and two loadstore units. Its 64 KB L1 cache is 128 way associative with 32 byte 
cache lines and L1 uses a round-robin replacement scheme. The L2 cache is 8 MB in 
size, which is four-way set associative with its own private cache bus. Each SMP node 
contains 4GB main memory for a total of 64 GB system memory. 

This second machine is composed of 332 Mhz 604e 4-way SMP nodes’, totaling 1344 
CPUs. Each compute node has a peak performance of 2.656 GigaOPS. The 604e 
processor has one floating-point unit and one loadstore unit. Its 32KB L1 cache is 4 way 
associative with 32 byte cache lines and L1 uses an LRU replacement scheme. The 
processor has a 500KB L2 cache. 

3.2 Case I: Raising Performance Exceptions 
To illustrate the use of performance assertions’, we demonstrate how a user can 

instantiate performance expectations for a given code segment. Then, when that 
expectation is violated on a different architecture, the user is immediately notified by 
PAS. 
for (j = 1; j c- lastrow - firstrow + 1; 

j++) 

s u m  = 0.0; 
fo r  (k = rowstr[jl; k c rOWStr[j + 11 ; 

k++) 

s u m  = s u m  + a[k] p[colidx[kll; 
( 

I 
w[jl = sum; 

1 

for (j = 1; j c= lastrow-firstrow+l; j++) 

int iresidue; 
double suml, sum2; 
i = rowatr [jl ; 
iresidue = (rowstr[j+ll-i) Z 2; 
suml = 0 . 0 ;  
sum2 = 0.0; 
if (iresidue == 1) 

fo r  (k = i+iresidue; k c= rowstr[j+ll-2; 

suml = suml + a [kl p [colidx [kl I ; 
sum2 = sum2 + a[k+ll pCcolidx[k+lll; 

( 

s u d  = s u d  + a [il *p lcolidx[il I ; 

k += 2) ( 

I 
w[jl = suml + sum2; 

Figure 4: Sparse matrix vector multiply 
for NAS CG. 

Figure 5: Unrolled by 2 version of 
sparse matrix vector multiply for NAS 

CG. 

Our focus is the NAS Benchmark CG, version 2.3. This benchmark uses a sparse 
matrix vector multiply (SMVM) as illustrated in Figure 4. Its notorious memory access 
patterns generally require that efficient implementations depend directly on the platform’s 
underlying memory architecture. In fact, many versions of SMVM exist, each tuned for 
individual memory architectures. As developers tune this code segment, they have 
expectations for this code on each architecture. Currently without PAS, there is no way 
for a developer to insert their performance expectations into the source code. Moreover, 
the only indication that this code segment is not performing well is overall poor 
application performance. 

1 i 

SMVM VERSION I POWER2 (604E) I POWER3 (630) 
1 Not unrolled Mu) I 7 8 ~ 3  I 15 -24 1 
1 Unrolled bv 2 (u2) I 84.08 I 15.20 I 
1 Unrolled by 8 (38) I 82.53 I 15.03 I 

Table 1: Performance of SMVM versions on example architectures. 

In Table 1, our experiments show that the tuned performance of SMVM executes 
quite differently on these two different processors. Assumptions about performance of 

-7 - 



this code on the PowerPC are not transferable, even though they are in the same 
processor family. On the Power2, the original SMVM 0 performs best while on the 
Power3, the U8 version performs best. More strikingly, the performance optimum is 
exactly the opposite of the poorest version on the other processor. 

Performance assertions help to solve this problem because they allow us to insert our 
expectations directly into the code. First, we add performance assertions to our code with 
expectations for the IBM 604e processor and then we migrate the code to the IBM Power 
3 processor. These chips have different memory and functional unit structures. Using 
specific information about the memory systems, a user could construct a specific 
assertion expression, such as $dlcachemisses/$loads, or they could rely on common 
performance measures, such as instructions per cycle, or even wall clock time scaled by 
the number of nonzero terms in the operation, to bind their performance property to the 
target processor. This flexibility allows users to construct the most appropriate expression 
for their performance property without regard to the mechanics of instrumentation or data 
collection. Then, when these assumptions are violated, the assertion raises a performance 
exception. 

3.3 Case I I :  Validating Performance Models 
High performance soha re  usually contains models of performance. In fact, m y  

libraries record metrics about their performance. For example, the Petsc library [2] allows 
developers to record the number of floating point operations performed during a 
computational phase. As shown in Figure 6, PA s can easily validate the model by using 
underlying instrumentation to check the calculation, even integrating application specific 
data into the expression. 

1: Pa-start(&pa, n$nFlopsm, PA-AEQ, "11 * %g * %gn, Gym, r a n ) ;  
2 :  for (j=ys; jcys+ym; j++) { 
3: for (i=xs; i<xs+xm; i++) { 
4: if (i == 0 I I j == 0 I I i == Mx-1 I I j == M y - 1 )  { 
5: f [ j l  [ i l  = xlj l  [ i l ;  
6: } else { 
7: U = x[ j l  [il; 
8: uxx = (two*u - x[ j l  [ i -11 - x[j l  [ i + l l )  *hydhx; 
9: UYY = (two*u - xIj-11 [ i l  - x[j+11 [il)*hxdhy; 

10:  f [j] [i] = uxx + uyy - sc*PetscExpScalar(u) ; 
11: 1 
12: 1 
13: } 
14 : Pa-end (pa) ; 

. 15 : PetscLogFlops (ll*ym*xm) ; 

Figure 6: Performance Model Validation. 

As the library evolves over time, it is ported to new architectures, and is optimized 
with new techniques. it is useful to validate these models against empirical data. In this 
example, the library logs the number of flops performed by the doubly nested for loop 
with the PetscLogFlops (ii*ym*~m) subroutine. Performance assertions can help validate 
this claim. At line 1, the Pa-start describes the expression and delineates the beginning 
Of the code Segment: Pa-start (&pa, v*$nFlopsvv, PA-AEQ, "11 * %g * %g", &ym, &xm). 

This routine takes as arguments the expression, a relational operator, and threshold or 
bounds. The expression in this example is the number of floating point operations, 
$nFlops, performed in the code segment. Next, the expression is compared using the 
relation operator, PA-AEQ, which represents approximately equal, or, in this case, *lo% of 
the threshold value (11 %g * %g). At line 14, Pa-end signals the end of the code 
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segment for the matching Pa-start. Pa-end collects all the relevant data, calculates the 
expression, and compares it to the threshold using the relational operator. If this 
expression fails, the default action notifies the user in a report at application termination. 
Clearly, it is easy to disable these assertions at either compile- or run-time using compiler 
options or environment variables, respectively. Once the validation is complete, the 
assertions can be removed. 

3.4 Case I 1  I: Local Performance-Based Adaptation 
Performance assertions can also change local application state in response to the 

outcome of its expression. For example, in our prototype, a PA can invoke a user-defined 
function that can change the state of the application, or select among several alternative 
implementations based on testing the performance of the alternatives at runtime. For 
example, our experiences with a Monte Carlo simulation allow us to alter a variety of the 
application-defined variables in response to performance conditions [5]. 

Reconsider our example in Case I of multiple versions of SMVM. In this example, 
the user selects one version of the implementation at compile time. Then, if the 
performance expectation in not satisfied, PAS can notify the user, who in turn, changes 
the implementation, recompiles the application, and executes the code again. Indeed, in 
this example, we can easily use PAS to evaluate several different versions of the 
implementation and then, based on the outcome of the samples, select one 
implementation for the remainder of the application runtime. To implement this strategy, 
we modify the code in three ways as Figure 7 shows. First, we separate three versions of 
the implementation with a conditional statement, using a global variable to select among 
these versions. Then, we register this variable with the PA runtime system. Finally, we 
create a PA expression that measures the quantity we are interested in minimizing along 
with a range of possible choices. 

pa-t pa-sm; 
int smvm-choice = 1; 
pa-start(&pa-smvm,"$nCycles/$nInsts",PAR_MINIMIZE, &smvm-choice, 3 ) ;  
switch(smvm-choice) 

case 1: 
{ 

/* SMVM not unrolled */ 
break; 

case 2: 
/* SMVM unrolled by 2 */ 
break; 

case 3: 
/* SMVM unrolled by 8 */ 
break; 

I 
pa end(pa s m )  ; 

Figure 7: Performance-based adaptation example using performance 
assertions. 

As the program executes, the PA runtime samples the performance of each 
implementation using the PA expression as provided by the user. Then, after some 
number of samples (e.g., in this case, 3 * 20 = 60), it selects one implementation choice 
by selecting the implementation with the minimal average value of the expression across 
all samples. Then, this PA disables itself and it remains dormant for the remainder of the 
application execution. Other PAS in this application operate independently. There are a 
practically innumerable number of ways to adapt application state in response to PAS. 
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Wl 
2.32 

Table 2: Measured CPI on SMVM 
implementations. 

M u2 V I  PA 

, 
I 

Figure 8: CG performance using various SMVM 
implementations including PA adaptation. 

4 Related Work 
Many research efforts have modeled the performance properties of applications [6, 

81. In fact, the name of performance assertions is not in and of itself novel. However, our 
technique and prototype, which are novel, allow users to assert explicitly in their code 
their performance properties, which can be verified empirically at runtime. In contrast to 
earlier'work by Per1 [8], this research focuses on runtime techniques to judge if an 
assertion has met its expectation. Perl's work checked for these properties in event logs, 
not in the application at runtime. The &ADS project (http://nhse2.cs.rice.edu/grads/) is 
addressing issues of application performance and performance contracts [13] on 
computational grids. Valuable work by the APART consortium has culminated in a 
performance property specification language: ASL. ASL allows developers to write 
complex properties describing patterns in performance data, but current implementations 
do not allow users to plant their expectations directly in their source code, where they can 
be measured and verified at runtime. Also, we plan to provide users with a more general 
framework for reacting to failed assertions [12]. For example, our current work allows 
assertions to perform local adaptations in response to assertions [SI. 

5 Conclusions 
Traditional techniques for performance analysis provide a means for extracting and 

analyzing raw performance information from applications. Users then reason about and 
compare this raw performance data to their performance expectations for important 
application constructs. This comparison can be tedious, difficult, and error-prone for the 
scale and complexity of today's architectures and software systems. To address this 
situation, we present a methodology and prototype that allows users to assert 
performance expectations explicitly in their source code using performance assertions. As 
the application executes, each performance assertion in the application collects data 
implicitly to verify the assertion. By allowing the user to specify a performance 
expectation with individual code segments, the runtime system can jettison raw data for 
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measurements that pass their expectation, while reacting to failures with a variety of 
responses. We present several compelling uses of performance assertions with our 
operational prototype including raising a performance exception, validating a 
performance model, and adapting an algorithm to an architecture empirically at runtime. 
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